

Agenda proposé

- 1. Contexte, objectifs de l'étude et méthodologie
- 2. Parc immobilier scolaire et stockage thermique
- 3. Gestion de projet et stratégies contractuelles
- 4. Performance des ATC et scénarios de substitution
- 5. Maintenance
- 6. Conclusion et bonnes pratiques à retenir

Contexte de l'étude

Contexte, objectifs et méthode

Parc immobilier et stockage

Gestion Performance

Maintenance

Bonnes pratiques

Mandat de Transition énergétique Québec (TEQ)

Maintenant : Secteur de l'innovation et de la transition énergétiques (SITE) du ministère de l'Énergie et des Ressources naturelles (MERN)

Équipe d'exemplarité de l'État :

- Objectifs de réduction du parc institutionnel
- · Accompagnement : identification, planification et réalisation

Contexte de l'étude

Contexte, objectifs et méthode

Parc immobilier et stockage

Gestion

Performance

Maintenance

Bonnes pratiques

Nouvelles constructions et bâtiments existants

CTA: Consommation totale annuelle d'énergie*
(GJ ou kWh)

*excluant procédés

Vocation	CTA _{combustible} / CTA _{bâtiment}	
Bureau		
École prim./sec.		
Cégep	≤ 15%	
CHSLD		
Autre		
Université	≤ 20%	
Centre hospitalier	≥ ∠U%	

Objectifs de l'étude

Contexte, objectifs et méthode

Parc immobilier et stockage

Gestion

Performance

Maintenance

Bonnes pratiques

- Informer les gestionnaires du parc institutionnel sur le stockage thermique
- Faciliter le recours aux accumulateurs thermiques électriques : mise en œuvre, impact énergétique, rentabilité
- 3. Promouvoir les conditions gagnantes, bonnes pratiques, recommandations en vue de travaux futurs

Méthodologie

Contexte, objectifs et méthode

Parc immobilier et stockage

Gestion

Performance

Maintenance

Bonnes pratiques

Inventaire du stockage thermique :

Dresser l'état des lieux

2. Entrevues avec gestionnaires, opérateurs et concepteurs :

Pratiques et processus actuels, bonnes pratiques et recommandations pour le futur

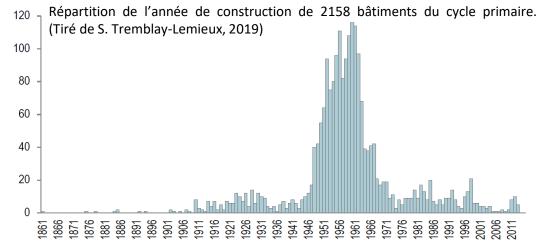
3. Étude de performance :

Performance actuelle, effets des pratiques actuelles sur la performance

4. Scénarios de comparaison vs d'autres technologies :

Avantages et inconvénients → Prise de décision éclairée Économies \$
Réduction des GES

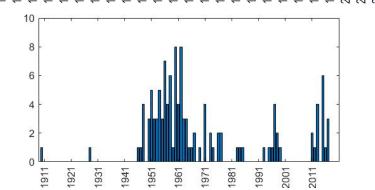
Parc immobilier scolaire québécois



Contexte, objectifs et méthode Parc immobilier et Gestion Performance Maintenance Bonnes pratiques

Dominance 1945 - 70 Normes de construction : 1976

Avant 1976:


- Enveloppe faible
- Réseaux hydroniques
- Combustibles fossiles
- Ventilés naturellement

Bâtiments répertoriés :

Dominance 1945 - 70, mais ...

- Enveloppe partiellement rénovée
- Réseaux hydroniques
- Ventilés naturellement (46/121)

Adapté de la figure 8 : Répartition de l'année de construction des bâtiments d'intérêt (n=121).

Bâtiments répertoriés

Contexte, objectifs et méthode

Parc immobilier et stockage

Gestion

Performance

Maintenance

Bonnes pratiques

Figure 3: Nombre de bâtiments répertoriés suite à l'appel à participer.

4 catégories d'intérêt

Stockage est...

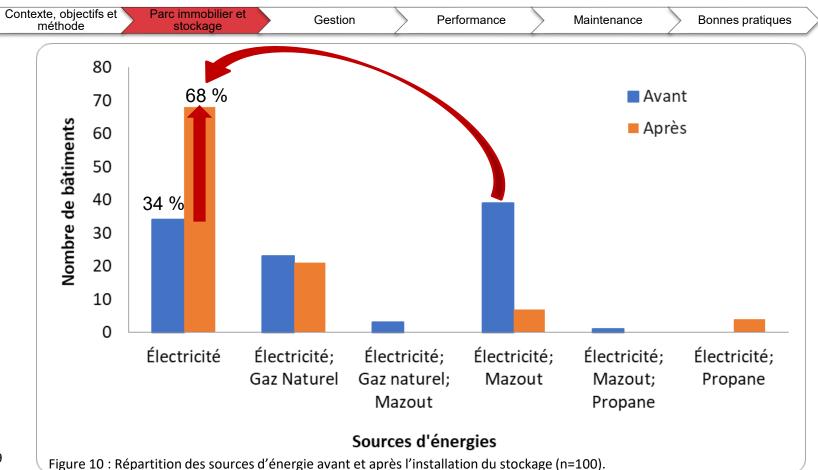
A: Présent et fonctionnel

B: Évalué, mais pas

retenu

C: À venir

D: Retiré


Résultat :

156 bâtiments dans 10 centres de services scolaires (CSS)

Source d'énergie avant/après stockage thermique

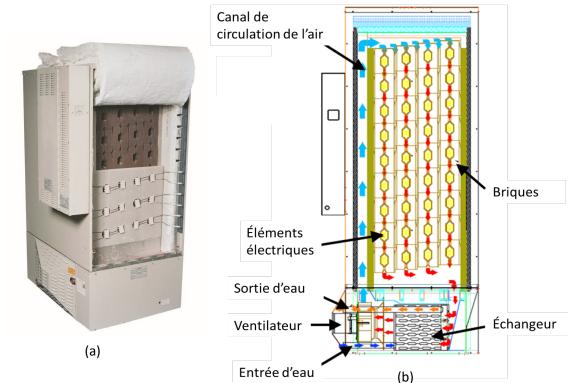
Technologies répertoriées

Contexte, objectifs et mmobilier et méthode Stockage Gestion Performance Maintenance Bonnes pratiques

Technologies	Nombre de bâtiment						
reamonagies	Α	В	С	D			
Accumulateurs thermiques —	→ 67	2	18	4			
Type centralisé, hydronique	51	0	9	4			
Type centralisé, à air forcé	1	0	0	0			
Type local, à air forcé	15	1	7	0			
Géothermie —	3 7	0	5	1			
Réservoir d'eau	2	0	0	1			
Matériaux à changement de phase	0	0	0	3			
Stratégies de contrôle —	→ 69	0	6	0			
Toutes technologies confondues	175	2	21	9			

Tableau 1: Répartition des bâtiments répertoriés selon les technologies et la catégorie de chaque site.

Combinaisons fréquentes :


- 1. ATC + stratégies contrôle
- 2. Géothermie + ATC
- 3. ATL + stratégies contrôle

Accumulateur thermique centralisé (ATC)

Contexte, objectifs et méthode Parc immobilier et stockage Gestion Performance Maintenance Bonnes pratiques

Modèle hydronique (ThermElect)

,		
	9150	9180
Énergie max. stockée (kWh)	290	440
Puissance max. charge (kW _{élec.})	53	80
Puissance max. décharge (kW _{therm.})	~70	~80
Masse (kg)	2 120	2 960
Superficie au sol	~12 pi ² ;	1,1 m ²
C: (C O :: / 1) E:		

Steffes Corporation. (s.d.). Fiche technique : ThermElect hydronique. Révision 2.

- (a) Steffes Corporation. (2022). Coop Marketing Kit.
- (b) Adapté de : Steffes Corporation. (2020). Manuel d'utilisation et d'installation, ThermElect hydronique. Modèles 9150, 9180. Version 2.18.

Paramètres de contrôle - Stockage thermique

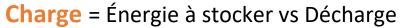
Contexte, objectifs et méthode

Parc immobilier et stockage

Gestion

Performance

Maintenance


Bonnes pratiques

Décharge = Besoins thermiques à combler

- Puissance kW ET énergie kWh requises
- À anticiper

Énergie stockée = Température stockage

Combien stocker kWh?

Détermine durée de charge requise

Figure 2: Exemple de commande prédictive.

Contrôle repose sur une commande prédictive

Paramètres de contrôle - ATC

Contexte, objectifs et méthode

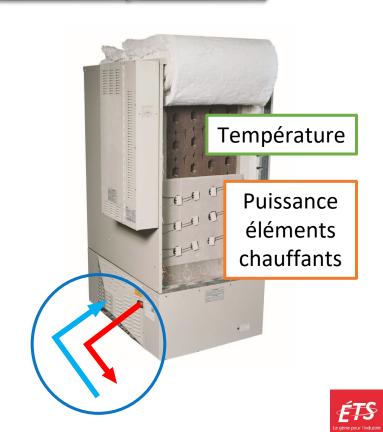
Parc immobilier et stockage

Gestion

Performance

Maintenance

Bonnes pratiques


Décharge

• 🖒 Énergie stockée 🕨 🖒 Puissance max. décharge

Énergie stockée

Charge

/ Énergie stockée / / Puissance élec. appelée

Analogie: Eau chaude domestique

Contexte, objectifs et méthode

Parc immobilier et stockage

Gestion

Performance

Maintenance

Bonnes pratiques

Décharge

• 🔰 Énergie stockée 🟲 🔰 Puissance max. décharge

Besoins anticipés : matin, soir

Énergie stockée

60°C

Charge

/ Énergie stockée / / Puissance élec. appelée

Périodes creuses : Milieu de journée, nuit

Figure tirée de :

Hydro-Québec. (2022). Mieux consommer : Eau chaude.

Repéré à : https://www.hydroguebec.com/residentiel/mieux-consommer/eau-chaude/chauffe-eau.html.

Paramètres de contrôle - ATC

Contexte, objectifs et méthode

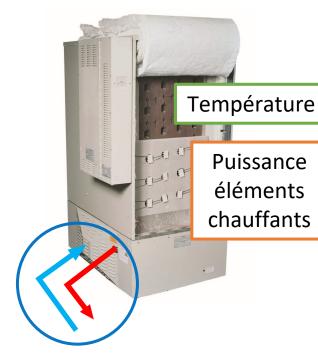
Parc immobilier et stockage

Gestion

Performance

Maintenance

Bonnes pratiques


Décharge

Énergie stockée

« Ce n'est pas tant compliqué à opérer. Côté contrôle, ce n'est pas compliqué non plus. C'est juste de savoir **comment l'optimiser**. »

Charge

- Participant #1, entrevues O&M

Entrevues : gestionnaires de projets

Contexte, objectifs et méthode

Parc immobilier et stockage

Gestion

Performance

Maintenance

Bonnes pratiques

Principales motivations:

- Remplacer équipements désuets / réfection de chaufferie
- Réaliser transformation majeure (ex: agrandissement)
- Nouvelle construction

... en profiter pour réduire :

- Frais d'exploitation
- GES liés au chauffage

		Localisation des projets						
ID.	Exp. Perso.	Hors centre	Rég. Métropol. Mtl.	Rég. de Capitale				
1	36 projets	Х						
2	2 projets		X					
3	1 projet	Χ						
4	3 projets		X					
5	2 projets			Х				
6	2 projets		X					
7	4 projets		X					

Adapté du Tableau 4: Caractéristiques des participants aux entrevues – volet approvisionnement.

Modes contractuels

Contexte, objectifs et Parc immobilier et Gestion Performance Maintenance Bonnes pratiques

Modes contractuels utilisés :

- Traditionnel plus bas soumissionnaire.
 Financement en maintien d'actifs.
- Économie d'énergie garantie (EEG).
 Autofinancement du projet.

Constat : Méconnaissance du contrat EEG et de la **possibilité d'y recourir**.

Appels d'offres et contrats types :

ID.	Exp.	Stratégie contractuelle				
ID.	Perso.	Expérience	Opinion			
1	26 projets	Trad.	Favorable			
	36 projets	EEG	Favorable			
2	2 projets	Trad.	Défavorable			
	2 projets	EEG	Favorable			
2	1 projet	Trad	Passablement			
3	1 projet	Trad.	Passablement favorable			
3	1 projet 3 projets	Trad.				
4	3 projets	Trad.	favorable			
_	, ,		favorable Favorable			
4	3 projets	Trad.	favorable Favorable Passablement			

Adapté du Tableau 4: Caractéristiques des participants aux entrevues – volet approvisionnement.

Stratégies contractuelles

Bonnes pratiques

Contexte, objectifs et Parc immobilier et Gestion Performance Maintenance

Peu importe le mode contractuel, s'assurer d'avoir les conditions gagnantes.

- → Expertise requise durant 1ère année pour ajuster séquence de contrôle.
 - Dans le contrat : Mise en service améliorée
 - À l'interne
 - Contrat de service à l'externe
- → Optimisation : ATC & réseau dans son ensemble.

Bonnes pratiques – gestion de projets

Contexte, objectifs et méthode Parc immo stocka	Laction Partormance	Maintenance Bonnes pratiques		
Mode	Traditionnel	EEG		
Financement	Maintien d'actifs	Autofinancement		
Octroi	Plus bas soumissionnaire *B.P.#1: Présélection qualité	Sélection qualité et VAN		
Mise en service améliorée 1 an	*B.P.#2: À spécifier au contrat pour optimiser contrôle	Incluse dans le contrat		
Spécification particulière	*B.P.#3: Prévoir l'accès aux pro	évisions météo du jour suivant		

Contexte, objectifs et

Bonnes pratiques – gestion de projets

Bonnes pratiques

Contexte, objectifs et méthode Parc immobilier et stockage Gestion Performance Maintenance

B.P.#12 : Prévoir **l'ajout de mesurage** sur les réseaux de chauffage existants lorsqu'une réfection de la chaufferie est prévue.

- Fournir données d'opération aux concepteurs
- Préciser séquence de contrôle dès la conception
- \sefforts et durée rodage fait par les opérateurs durant 1ère année

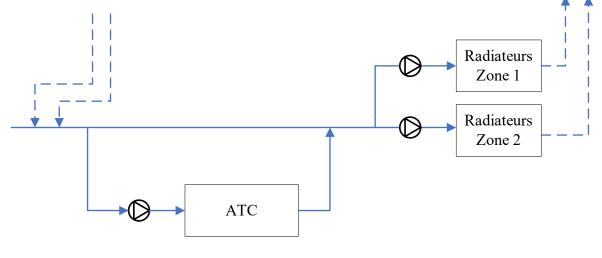
^{*}Lors de réfection/électrification chaufferie existante.

^{*}Aller chercher ces données avant de lancer l'appel d'offres.

Analyse de performance

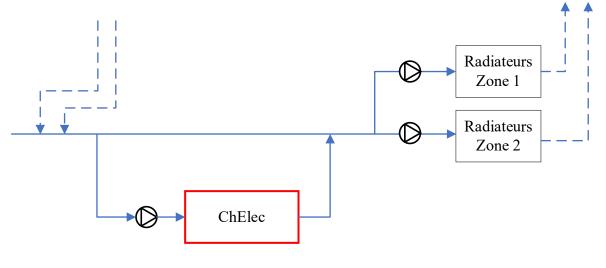
Contexte, objectifs et méthode Parc immobilier et stockage Gestion Performance Maintenance Bonnes pratiques

Sites caractérisés par :


- Sources de chauffage en place
- Utilisation de l'ATC : source principale ou gestion de pointe
- Usages desservis par le réseau hydronique : Rad, A/N, ECD
- 2 scénarios de substitution retenus : 100% électrique; biénergie
- Économies : \$, kW, GES

Contexte, objectifs et méthode Parc immobilier et stockage Gestion Performance Maintenance Bonnes pratiques

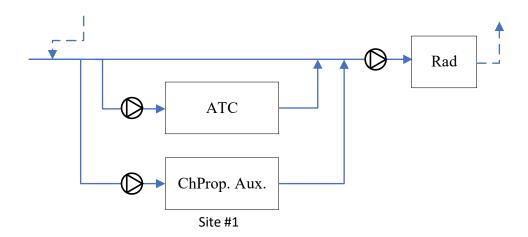
- Sources de chauffage : ATC seulement
- Source principale : électricité (ATC)
- ATC : source principale
- Usage : Rad



Contexte, objectifs et méthode Parc immobilier et stockage Gestion Performance Maintenance Bonnes pratiques

Scénario de substitution : 100 % électrique

ATC Chaudière électrique



Contexte, objectifs et Parc immobilier et stockage Gestion Performance Maintenance Bonnes pratiques

- Sources de : ATC + ChProp
- Source principale chauffage : électricité (ATC)
- ATC : source principale
- Usage : Rad

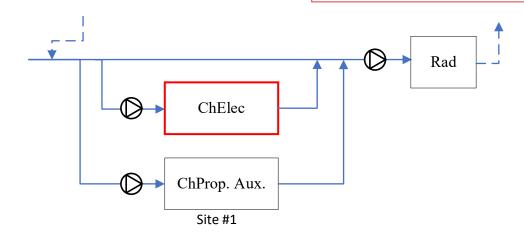
Contexte, objectifs et méthode

Parc immobilier et stockage

Gestion

Performance

Maintenance

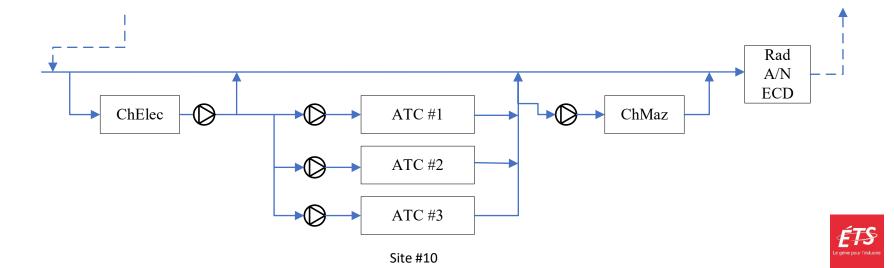

Bonnes pratiques

Scénario de substitution ... selon critère Exemplarité de l'État

 $CTA_{comb}/CTA_{total} < 15\%$ $Bi\acute{e}nergie$ $Pointes \rightarrow Combustible$ $Reste : ATC \rightarrow Ch. \acute{e}lectrique$

 $CTA_{comb}/CTA_{total} \ge 15\%$ 100% électrique
Cons. combustible inchangée

ATC \rightarrow Ch. électrique



Contexte, objectifs et Parc immobilier et stockage Gestion Performance Maintenance Bonnes pratiques

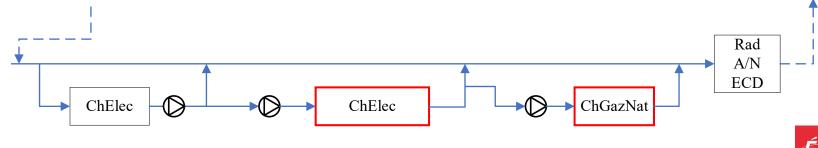
- Sources de chauffage : ATC + ChElec + ChMaz
- Source principale : électricité (ChElec)
- ATC : gestion de pointe
- Usages : Rad + A/N + ECD

Contexte, objectifs et méthode

Parc immobilier et stockage

Gestion

Performance


Maintenance

Bonnes pratiques

Scénario de substitution ... selon critère Exemplarité de l'État

 $CTA_{comb}/CTA_{total} < 15\%$ $Bi\acute{e}nergie$ $Pointes \rightarrow Combustible$ $Reste: ATC \rightarrow Ch. \acute{e}lectrique$

 ${\rm CTA_{comb}/CTA_{total}} \ge 15\%$ 100% électrique
Cons. combustible inchangée ${\rm ATC} \rightarrow {\rm Ch.}$ électrique

Analyse de performance - Résumé

Contexte, objectifs et méthode

Parc immobilier et stockage

Gestion

Performance

Maintenance

Bonnes pratiques

Scénarios de substitution 100 % électrique

Usage ATC	No. site	Superficie (m²)	Réd. Facture	Facture saison sans ATC	Réd. pointe saison	Pointe saison sans ATC	Réd. GES
Source principale	#1	1 438	-2 500 \$	14 000 \$	-51 kW	140 kW	-
	#2	901	-1 500 \$	8 300 \$	-44 kW	101 kW	-
	#18	2 242	-1 600 \$	16 300 \$	-30 kW	92 kW	-
Pointe	#9	7 742	+1 900 \$	48 900 \$	-37 kW	249 kW	-
	#11	18 628	-750 \$	72 550 \$	-19 kW	378 kW	-
	#16	3 704	-2 200 \$	20 600 \$	-68 kW	213 kW	-

Analyse de performance - Résumé

Contexte, objectifs et méthode Parc immobilier et stockage Gestion Performance Maintenance Bonnes pratiques

Scénarios de substitution Biénergie

Usage ATC	No. site	Superficie (m²)	Réd. facture	Facture saison sans ATC	Réd. pointe saison	Pointe saison sans ATC	Réd. GES (t. CO _{2éq})	GES saison sans ATC (t. CO _{2éq})
Source principale	#4	4 402	-1 400 \$	24 900 \$	-5 kW	162 kW	-21,6	22
Pointe	#10	34 262	+250 \$	160 100 \$	-	1 134 kW	-13	28
Source principale (1) et pointe (1)	#5	3 904	-1 100 \$	22 300 \$	+35 kW	122 kW	-36	38

Programmes de subventions

Contexte, objectifs et méthode Parc immobilier et stockage Gestion Performance Maintenance Bonnes pratiques

R.#4: Que les programmes de subvention disponibles pour l'implantation d'un ATC soient activement publicisés auprès des firmes de génie-conseil, des ESE et des gestionnaires de bâtiments institutionnels.

Programme	Mesures	Appui financier		
Solutions Efficaces, HQ	Mesures ≥ cons. électricité chauffage ET ATC sur boucle d'eau chauffée à l'élec.	16 240 \$ par ATC 290 kWh 24 640 \$ par ATC 440 kWh Appuis pour les autres mesures.		
ÉcoPerformance, TEQ	☑ GES : Retrait et remplacement chaudière au combustible par un appareil élec.	Jusqu'à 75 % des coûts admissibles.		

Performance dépend de l'opération et maintenance

Contexte, objectifs et Parc immobilier et stockage Gestion Performance Maintenance Bonnes pratiques

Enjeux d'O&M constatés	Rendement ATC
Priorité de décharge	ATC #1 (source principale) : 88 % ATC #2 (pointe) : 73 % Même température briques (pertes), mais utilisation différente!
Faible débit d'eau mesuré (25% valeur nominale)	66 % Utilisation similaire sur d'autres sites : 75 – 85 %
Ventilateur défaillant	0 % Aucune décharge pendant la saison

→ Fort impact sur la performance 10/16 bonnes pratiques en O&M

Performance dépend de l'opération et maintenance

Contexte, objectifs et méthode

Parc immobilier et stockage

Gestion

Performance

Maintenance

Bonnes pratiques

« Les gestionnaires [de systèmes CVCA] ont tellement de systèmes à gérer et de plus en plus complexes, il faut rendre ça simple [leur opération]. Quelqu'un qui ne reçoit pas un message d'alarme, il ne se rendra pas compte tout de suite du problème et ne pourra pas le corriger [...]. »

- Participant #5, entrevues conception

B.P.#6:

Implémenter des séquences dans le BMS pour détecter et diagnostiquer les défaillances de composants.

Maintenance

Contexte, objectifs et Parc immobilier et stockage Gestion Performance Maintenance Bonnes pratiques

Objectif:

Documenter la maintenance à anticiper et les précautions à prendre

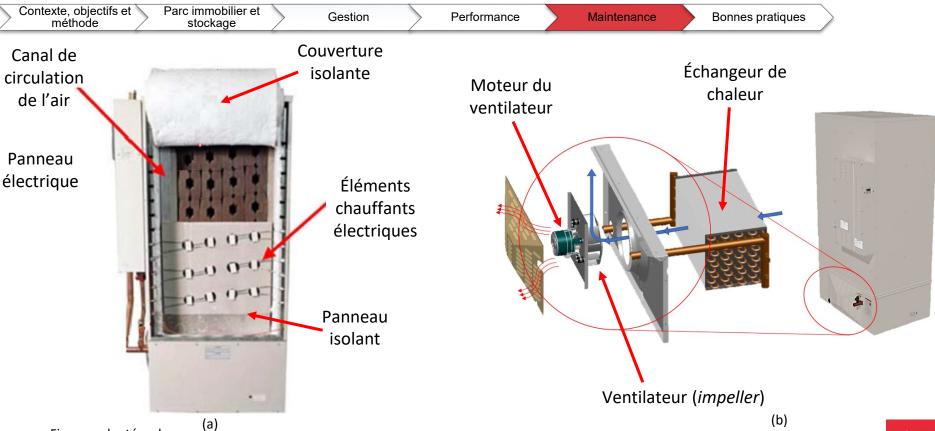
Permettre aux gestionnaires et opérateurs de mieux planifier :

- Budget
- Ressources humaines et matérielles
- Opération du réseau de chauffage et disponibilité de l'ATC

Entrevues : Opération et maintenance

Contexte, objectifs et méthode Parc immobilier et stockage Gestion Performance Maintenance Bonnes pratiques

Tableau 5: Caractéristiques des participants aux entrevues - volet opération et maintenance


ID.	Employeur	Nb. bâtiments	Nb. ATC	Année d'installation du 1 ^{er} ATC	Nb. total de saisons de chauffage
1		12	19	2011	99
2		1	2	2012	18
3	000 P	16	16	2008	85
4	CSS-Ressources matérielles	6	6	2011	53
5		18	30	2006	339
6		2	5	2015	30
7		10	11	2012	52
8	ESE	6	12	2016	57
9	ESE	n. d.	n. d.	n. d.	n. d.
10	Firme de génie- conseil	1	~ 2	n. d.	n.a.
11		4	~ 7	2018	~ 4
12	SQI-Exploitation	~ 2	> 15	2008	n. d.
13		1	9	2009	108

Retour sur les composants de l'ATC

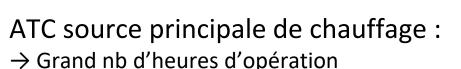
Figures adaptées de :

(a) Steffes Corporation. (2016). Heating Element Service and Repair Guide for 8100 & 9100 Series ThermElect. 8 p.

(b) Steffes Corporation. (2020). Manuel d'utilisation et d'installation, ThermElect hydronique. Modèles 9150, 9180. Version 2.18.

Remplacements documentés

Contexte, objectifs et méthode Parc immobilier et stockage Gestion Performance Maintenance Bonnes pratiques


Composants	ID.	Nb. ATC	Type	Coût approx. (\$)	Fréquence	Temps approx.
Moteur de ventilateur	#1	n.d.	C-R	500-600	Aux 2-3 ans	2-3 h
	#2	1	С	n.d.	Après 7 ans	3 h
	#3	n.d.	С	n.d.	Après 10 ans	1,5 h
	#4	~4-5	С	1 000	Après 2-5 ans	2 h
	#5	n.d.	С	n.d.	n.d.	n.d.
	#7	2	С	n.d.	n.d.	n.d.
	#8	n.d.	C-R	1 000	Aux 2-3 ans	n.d.
	#11	1	С	n.d.	Après 1 an	n.d.
	#12	1	С	n.d.	Après 1 an	n.d.
	#13	4	С	800	Après ~6 ans	4 h

Moteur du ventilateur

Contexte, objectifs et

méthode

Gestion

Parc immobilier et

stockage

- → Faible demande de chauf. = basse vitesse
- Cause potentielle à basse vitesse : Courant appelé supérieur au courant nominal

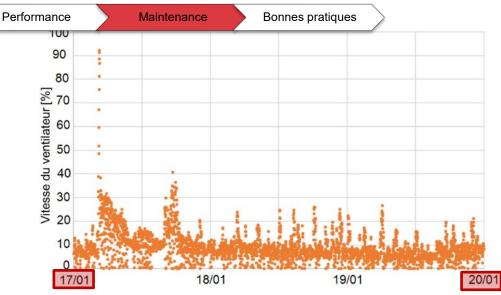


Figure 13: Vitesse du ventilateur de l'ATC1, site #3, 17 au 20 janvier 2021

B.P.#7: Ne pas faire fonctionner le ventilateur de l'ATC à bas régime pendant une **durée prolongée**.

B.P.#8: Si ATC est la **source principale de chauffage**, prévoir un moteur de ventilateur en inventaire pour remplacement curatif imprévisible.

Remplacements documentés

Contexte, objectifs et méthode Parc immobilier et stockage Gestion Performance Maintenance Bonnes pratiques

Composants	ID.	Nb. ATC	Туре	Coût approx. (\$)	Fréquence	Temps approx.
Éléments chauffants ¹	#2	1	С	15 000/18 un.	Après 8 ans	1-1,5 jrs/18 un.
	#5	n.d.	С	800/un.	Après 8-10 ans	2 h/un.
Éléments chauffants et isolant ²	#4	3	C-R	12 000- 15 000/12 un.	Après 8-10 ans	1-2 jrs/12 un.

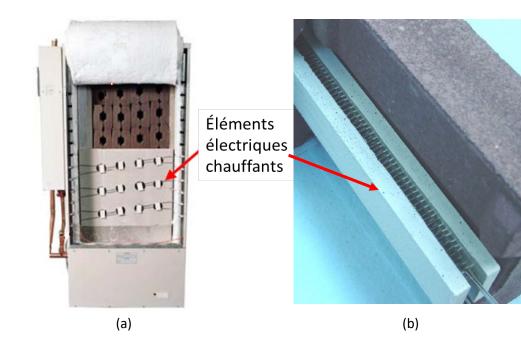
¹un. : unité = 1 paire d'éléments chauffants. 18 paires dans le modèle 9180.

²Coûts et temps approx. pour éléments chauffants + isolant

Éléments chauffants

Contexte, objectifs et méthode Parc immobilier et stockage

Gestion


Performance

Maintenance

Bonnes pratiques

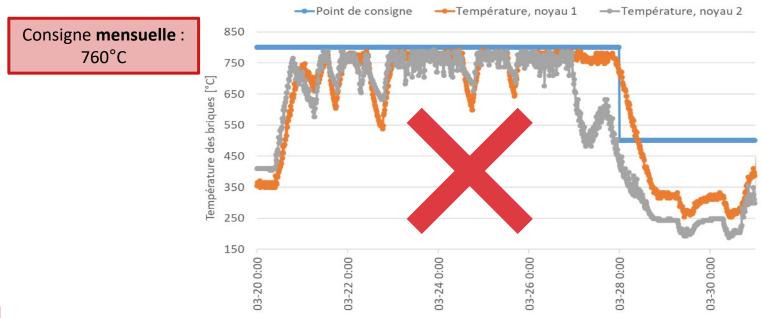
Peu de remplacements rapportés, mais **intervention majeure**

- Mise hors service 2-4 jrs
- Multiples défaillances avant de tous les remplacer (+ de 4-5 un./18)
- Personnel interne ou externe

Figures adaptées de :

(a) Steffes Corporation. (2016). Heating Element Service and Repair Guide for 8100 & 9100 Series ThermElect. 8 p.

(b) Desbiens, P.-M., & Groupe Master. (2016). L'accumulateur thermique. Communication présentée au Colloque Multi Énergies, Québec (Qc), Université Laval.



Éléments chauffants

Contexte, objectifs et méthode Parc immobilier et stockage Gestion Performance Maintenance Bonnes pratiques

B.P. #4: Ne pas maintenir l'ATC à haute température (>700°C) pendant des **périodes prolongées**.

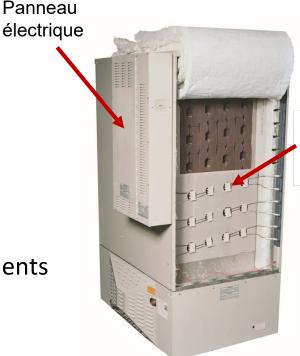
Éléments chauffants

Contexte, objectifs et méthode

Parc immobilier et stockage

Gestion Performance

Maintenance


Bonnes pratiques

Aucune détection automatisée par l'ATC :

B.P. #6: Intégrer des alertes de défaillances sur l'interface du BMS.

Maintenance préventive :

B.P. #9 : Prioriser la vérification de l'état des éléments chauffants via le panneau électrique plutôt qu'en ouvrant l'appareil.

Éléments électriques chauffants

Ressources à allouer à la maintenance

Contexte, objectifs et Parc immobilier et Gestion Performance Maintenance Bonnes pratiques

B.P. #10 : Prévoir une **maintenance préventive annuelle**. Pratiques recommandées dans la **fiche**.

► Moteur : 500-1000 \$, 2-4 h

► Éléments chauffants : 800-900\$ / un. (9180 = 18 un.)

1-2 jrs pour remplacer + temps refroidissement/réchauffe

Forts liens entre l'opération, la maintenance et la performance.

S'assurer de la qualité de l'expertise et optimiser durant 1ère année.

Conclusion et bonnes pratiques

Contexte, objectifs et méthode Parc immobilier et stockage Gestion Performance Maintenance Bonnes pratiques

Mode traditionnel:

- Présélection qualité pour conception, contrôle et entrepreneurs.
- Mise en service améliorée aux frais du soumissionnaire 1^{ère} année.

Peu importe le mode :

- Spécifier l'intégration d'une prévision météo.
- Demander d'intégrer des alertes sur l'interface du BMS.
- Prévoir mesurage/enr. données lors de réfection de chaufferie pour que les concepteurs élaborent ++ la séquence de contrôle.

0&M:

- Précautions liées à l'opération (moteur du ventilateur, éléments chauffants).
- Ressources à allouer annuellement pour maintenance préventive.

Les auteurs tiennent à remercier :

Personnel de :

Centres de services scolaires (CSS)

Newtech Électricité

Direction de l'exploitation des immeubles de la Société québécoise des infrastructures (SQI)

Expertise énergétique d'Hydro-Québec

Steffes Corporation

Contrôles AC Inc.

Bouthillette Parizeau

Ecosystem

EXP

GBI

Johnson Controls

LGT

Ponton Guillot

Étudiants-chercheurs:

Milena Kalzou Baré
Julien Charbonneau
Sullivan Danjou
Julien Drouet
Eyé Imelda Ido
Abdelkrim Makhlouf
Eve Patricia Ngangsop Ngopjop

Contact:

katherine.davignon@etsmtl.ca

ets

mtl .ca